【STM32】ADC库函数、一般步骤详解(实例:内部温度传感器实验)

您所在的位置:网站首页 stm32 库函数无法调用 【STM32】ADC库函数、一般步骤详解(实例:内部温度传感器实验)

【STM32】ADC库函数、一般步骤详解(实例:内部温度传感器实验)

#【STM32】ADC库函数、一般步骤详解(实例:内部温度传感器实验)| 来源: 网络整理| 查看: 265

STM32F1xx官方资料: 《STM32中文参考手册V10》-第11章 模拟/数字转换(ADC)

《STM32中文参考手册V10》-第11章 第11.10小节 温度传感器

 

ADC采样数值

如何STM32的ADC模块,得到接入ADC管脚上的实际电压值?

会读到什么值

由于STM32的ADC是12位逐次逼近型的模拟数字转换器,也就是说ADC模块读到的数据是12位的数据。

因此:STM32读到的ADC值,是从0到4095(111111111111)。当把ADC引脚接了GND,读到的就是0;当把ADC引脚接了VDD,读到的就是4095。

读到的值怎么换算成实际的电压值

前面提到了,我们输入GND,读到的值是0,输入VDD,得到的值是4095,那么,当读到2035的时候,怎么求输入电压多少V吗?这个问题,归根接地,就到了数学XY坐标,已知两点坐标值(0,0)(3.3,4095),给出任意X坐标值,求Y值的问题了吧?简单不简单?

参考电压是什么

讨论这个问题之前,先拿万用表量一下你的VDDA的实际电压是多大?是不是标准的3.300V?应该不是吧?或许是2.296V,或许是3.312V。然后你把VDD连接到ADC引脚之后,得到的是4095;也就是,实际上,当你读出4095这个数据的时候,实际的电压值不是你想象中的3.300V。有些初学者,觉得几毫伏的电压差无所谓,但实际应用中,几毫伏就可能代表很大的实际工况,例如,在一个量程为50克的电子称上。

所以,这时候,芯片厂商就想了一个办法,给ADC模块中引入参考电压,由非常标准的参考电压芯片来接入参考电压引脚。标准的电压芯片,我们一般叫做参考电压芯片,或者叫做基准电压芯片。例如REF3133(输出3.300V)、REF3025(输出2.500V)等等。

ADC引脚的输入电压范围是多大

一般情况下,ADC引脚的输入电压,是从0~VDD,如果有REF引脚,一般是0~Vref,也有0~2Vref的情况。

如果被测的电压大于ADC的输入电压,例如,要用STM32测量0~5V的电压的话,可以在输入ADC引脚之前,加入电阻分压和放大器电路。

 

ADC相关配置库函数 1个初始化函数 void ADC_Init(ADC_TypeDef* ADCx, ADC_InitTypeDef* ADC_InitStruct);

作用:配置ADC模式、扫描模式、单次连续模式、外部触发方式、对齐方式、规则序列长度。

1个使能函数 void ADC_Cmd(ADC_TypeDef* ADCx, FunctionalState NewState);

作用:配置ADC使能。

1个软件转换函数 void ADC_SoftwareStartConvCmd(ADC_TypeDef* ADCx, FunctionalState NewState);

作用:ADC使能软件转换(在ADC_Init函数中,外部触发方式选择none)。

1个规则通道配置函数 void ADC_RegularChannelConfig(ADC_TypeDef* ADCx, uint8_t ADC_Channel, uint8_t Rank, uint8_t ADC_SampleTime);

作用:配置某个ADC控制器的某个通道以某种采样率置于规则组的某一位(对应函数的四个参数:ADC控制器名、ADC通道名、规则组的第n个、采样率)。

1个获取转换结果函数 uint16_t ADC_GetConversionValue(ADC_TypeDef* ADCx);

作用:获得某个ADC控制器的软件转换结果。

 

ADC一般步骤

实例要求:利用ADC1的通道1(PA1)采集外部电压值。

开启PA口时钟和ADC1时钟,设置PA1为模拟输入。调用函数:GPIO_Init();APB2PeriphClockCmd();复位ADC1,同时设置ADC1分频因子。调用函数:ADC_DeInit(ADC1);RCC_ADCCLKConfig(RCC_PCLK2_Div6);初始化ADC1参数,设置ADC1的工作模式以及规则序列的相关信息。调用函数:void ADC_Init();使能ADC并校准。调用函数:ADC_Cmd();配置规则通道参数。调用函数:ADC_RegularChannelConfig();开启软件转换:ADC_SoftwareStartConvCmd(ADC1);等待转换完成,读取ADC值。调用函数:ADC_GetConversionValue(ADC1)。 //初始化ADC //这里我们仅以规则通道为例 //我们默认将开启通道0~3 void Adc_Init(void) { ADC_InitTypeDef ADC_InitStructure; GPIO_InitTypeDef GPIO_InitStructure; RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA |RCC_APB2Periph_ADC1, ENABLE ); //使能ADC1通道时钟 RCC_ADCCLKConfig(RCC_PCLK2_Div6); //设置ADC分频因子6 72M/6=12,ADC最大时间不能超过14M //PA1 作为模拟通道输入引脚 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_1; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN; //模拟输入引脚 GPIO_Init(GPIOA, &GPIO_InitStructure); ADC_DeInit(ADC1); //复位ADC1 ADC_InitStructure.ADC_Mode = ADC_Mode_Independent; //ADC工作模式:ADC1和ADC2工作在独立模式 ADC_InitStructure.ADC_ScanConvMode = DISABLE; //模数转换工作在单通道模式 ADC_InitStructure.ADC_ContinuousConvMode = DISABLE; //模数转换工作在单次转换模式 ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None; //转换由软件而不是外部触发启动 ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right; //ADC数据右对齐 ADC_InitStructure.ADC_NbrOfChannel = 1; //顺序进行规则转换的ADC通道的数目 ADC_Init(ADC1, &ADC_InitStructure); //根据ADC_InitStruct中指定的参数初始化外设ADCx的寄存器 ADC_Cmd(ADC1, ENABLE); //使能指定的ADC1 ADC_ResetCalibration(ADC1); //使能复位校准 while(ADC_GetResetCalibrationStatus(ADC1)); //等待复位校准结束 ADC_StartCalibration(ADC1); //开启AD校准 while(ADC_GetCalibrationStatus(ADC1)); //等待校准结束 } //获得ADC值 //ch:通道值 0~3 u16 Get_Adc(u8 ch) { //设置指定ADC的规则组通道,一个序列,采样时间 ADC_RegularChannelConfig(ADC1, ch, 1, ADC_SampleTime_239Cycles5 ); //ADC1,ADC通道,采样时间为239.5周期 ADC_SoftwareStartConvCmd(ADC1, ENABLE); //使能指定的ADC1的软件转换启动功能 while(!ADC_GetFlagStatus(ADC1, ADC_FLAG_EOC ));//等待转换结束 return ADC_GetConversionValue(ADC1); //返回最近一次ADC1规则组的转换结果 } u16 Get_Adc_Average(u8 ch,u8 times) { u32 temp_val=0; u8 t; for(t=0;t


【本文地址】


今日新闻


推荐新闻


CopyRight 2018-2019 办公设备维修网 版权所有 豫ICP备15022753号-3